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GAS DENSITY DETECTOR 
FOR USE I N  SPACE* 

By D. S. Wollan, W. P, Trower, 
K. Ramamurti and W, K. Meshejian 

Physics Department 
Vi rg in ia  Polytechnic I n s t i t u t e  

Blacksburg, Vi rg in ia  24061 

SUMMARY 

W e  have inves t iga ted  t h e o r e t i c a l l y  and experimentally the s u i t a b i l i t y  of 

radioactively-induced cur ren ts  i n  ion iza t ion  chambers and propor t iona l  counters 

and of breakdown cur ren ts  i n  glow tubes as a monitor of gas  dens i ty  f o r  

meteoroid de t ec t ion  i n  space. Ion iza t ion  chambers using moderate (5  1mCi)  

alpha sources have maximum cur ren t s  10 A at  several hundred vo l t s .  The  -6 

curren t  has an approximate l i n e a r  dependence on gas dens i ty  a t  intermediate  

d e n s i t i e s  (- 1 t o  760 Torr a t  25' C), which might m a k e  i t  use fu l  as a h o l e  s i z e  

de tec tor .  

up t o  

non-monotonic, which would make ana lys i s  of their readings d i f f i c u l t ,  

Proport ional  counters u t i l i z i n g  similar sources provide cur ren ts  

A a t  - 1000 V, bu t  the dependence of cur ren t  on gas  dens i ty  is  

T h e  

most promising gas de t ec to r s  are glow tubes,  which have cur ren ts  w 1 mA a t  

moderate vol tages  (- 200 V ) ,  Optimum parameters f o r  a coaxia l  glow tube 

are given. 

t o  a i d  i n  f i r i n g  each tube. 

ca l ib ra t ed  from -195' t o  100' C. 

tube €or meteoroid hole  s i z e  de t ec t ion  i n  space may be  d i f f i c u l t ,  

W e  use helium gas and a 0.34 V C i  c o b a l t 4 0  rad ioac t ive  f o i l  source 

Three devices have been constructed and 

Vibrat ion tests are reported.. U s e  of a glow 

* Preliminary r e s u l t s  w e r e  reported i n  V a ,  J. Sc i ,  _c 20. (1969), 



I. INTRODUCTION 

A knowledge of meteoroid characteristics i n  space is  of intr insic  interest 

t o  space scientists and has g r e a t  p r a c t i c a l  importance t o  NASA as a design 

consider a t  i o n  

t a s k  because they have no characteristic electric o r  magnetic p rope r t i e s ,  s o  

that usua l  e lectromagnet ic  de t ec t ion  techniques are no t  poss ib le ,  One 

poss ib l e  de t ec t ion  device is a gas- f i l l ed ,  thin-wal led container  which lo ses  

i ts  gas when punctured by a meteoroid. 

r epa i r ab le ,  th is  is c l e a r l y  a one-shot device,  

one of two modes. 

a puncture has occurred i f  the gas dens i ty  f a l l s  below some preset threshold,  

A l a r g e  number of conta iners  m u s t  be  flown i f  the average meteoroid f l u x  is 

t o  be measured from the 

and from the geometry of the devices.  A second mode is that of a h o l e  s i z e  

i n d i c a t o r  i n  which the time rate of change of the gas  dens i ty  i n  the device  

is  measured, 

determined i f  the r e l a t ionsh ip  between ho le  s i z e  and gas dens i ty  changes 

w e r e  known. This would be  very use fu l  information, b u t  is  harder  t o  do, 

Measurement of the p rope r t i e s  of meteoroids is no t  an easy 

Unless the puncture is  e a s i l y  

This d e t e c t o r  can ope ra t e  i n  

In the f i r s t  i t  i s  j u s t  an "on-off" gauge, s igna l ing  that 

number of conta iners  punctured i n  a given time period 

The s i z e  of a puncture i n  the conta iner  w a l l  could be  

The purpose of the development work descr ibed here is  t o  cons t ruc t  a 

s m a l l ,  rugged, l igh tweight  gauge f o r  measuring the gas dens i ty  i n  a container  

by using ion iz ing  p a r t i c l e s .  

schematic diagram is shown i n  Figure 1. 

iso topes  (i.e. alpha, b e t a  o r  g a m a  rad ia t ion )  i on ize  the  gas between the  

two e lec t rodes  of the gas de tec tor .  An emf. E e s t a b l i s h e s  an electric 

cur ren t  I between the e l ec t rodes  and i n  the external c i r c u i t .  The cu r ren t  

I,  measured w i t h  an ammeter o r  e lec t rometer ,  i s  i n  gene ra l  a complicated 

W e  concentrate  on an "on-off" type gauge. A 

Particles produced by r ad ioac t ive  

2 



Figure 1 .  Schematic diagram of  a gas detector. 
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func t ion  of the gas dens i ty  as w e l l  as the o the r  parameters, bu t  we n o t e  

that there is n e g l i g i b l e  cu r ren t  when the i n t e r e l e c t r o d e  volume is  h ighly  

evacuated, as there are few gas  molecules t o  ion ize ,  A gas dens i ty  gauge 

based on this  pFinc ip le  can be  constructed which has s m a l l  s i z e  and weight, 

r ap id  response, and no moving p a r t s .  

cur ren t  output when gas i s  present ,  and a n e g l i g i b l e  cu r ren t  when there is  

no gas i n  the de tec to r .  

It would g ive  a r e l a t i v e l y  l a r g e  

A t y p i c a l  I-V p l o t  which is c h a r a c t e r i s t i c  f o r  this device operat ing on 

V is the vol tage  d i r e c t  cur ren t  a t  f ixed  gas p re s su re  is  shown i n  Figure 2, 

across  the e lec t rodes .  

chamber" regime. (2-7' 

because more and more of the ionized gas p a r t i c l e s  are s w e p t  t o  and co l l ec t ed  

by the e l ec t rodes ,  and fewer recombine before  co l l ec t ion ,  The  constant  

cu r ren t  from A t o  B i n d i c a t e s  t h a t  a l l  the gas  ions  being produced are 

col lec ted ,  as recombination is neg l ig ib l e ,  

are acce lera ted  s u f f i c i e n t l y  by t h e  higher  vol tages  t o  produce secondary 

ions  i n  the gas. 

produced by the inc iden t  r a d i a t i o n  can i t s e l f  produce many more ions  t o  b e  

co l l ec t ed  by the e lec t rodes .  

the "proport ional  counter" regime, (3-5 * 7*8) the electric cur ren t  i s  not  

se l f -main ta in ing:  i f  the ioniz ing  r a d i a t i o n  is  removed, the cur ren t  f a l l s  t o  

zero. This is  a l s o  t r u e  f o r  i on iza t ion  chambers. However, in the upper 

p a r t  of the B t o  C region,  known as the t%eiger4fuller'1 

cu r ren t  is self-maintaining, 

The region 0 t o  B is  known as the yt ionizat ion 

A s  V is increased from 0 t o  A, the cur ren t  increases 

I n  the region B t o  C the gas ions  

Hence, there is  a "mult ipl icat ion( '  e f f e c t  whereby one ion  

In the lower p a r t  of the region B t o  C ,  called. '  

(9 1 regime, the 

Ionizing r a d i a t i o n  is  needed t o  begin the 

electric discharge,  bu t  once e s t ab l i shed ,  the cur ren t  w i l l  cont inue i n  the 

absence of the rad ia t ion ,  Geiger-Muller counters opera te  i n  this regime 

4 
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with s u i t a b l e  quenching agents. 

The regions from C t o  L i n  Figure 2 are a l l  se l f -main ta in ing ,  The 

(10) "Townsend discharge" region C t o  D is used f o r  "corona s t a b i l i z e r "  tubes.  

"Glow discharge" (10-14) occurs i n  the  region D t o  G ,  

"normal glow discharge" regime from E t o  F is the operat ing region f o r  

commercial glow lamps and vol tage  regula tor  tubes, From G t o  L, there is a 

t r a n s i t i o n  t o  a high cur ren t  arc discharge,  It is  worth mentioning that the 

cur ren t  is l imi ted  p r inc ipa l ly  by t h e  ex te rna l  r e s i s t a n c e  (R i n  Figure 1) i n  

the  glow discharge and arc regions. 

The constant vol tage,  

We have examined the ion iza t ion  chamber, p ropor t iona l  counter, and glow 

discharge regimes f o r  their s u i t a b i l i t y  as a gas  de t ec to r ,  

involve r e l a t i v e l y  simple construct ion techniques because gas  p u r i t y  and the 

c leanl iness  of the e l ec t rode  sur faces  are not  of c r i t i ca l  concern. Unfortunately, 

t he  ion iza t ion  chamber gives  low cu r ren t s  (- 10 A) when moderate source 

a c t i v i t i e s  are used. The propor t iona l  counter on the  o the r  hand requi res  

The f i r s t  two 

-7 

high vol tages  (> 1000 V ) ,  

discharge region, g ives  acceptable  cu r ren t s  (- 1mA) a t  moderately low 

voltages  (- 200 V ) ,  bu t  the gas pu r i ty  and su r face  c leanl iness  requirements 

are extremely s t r i n g e n t  f o r  cons is ten t  optimum r e s u l t s .  

The glow tube operat ing i n  t h e  normal glow 

I n  what follows w e  g ive  a summary of t he  key t h e o r e t i c a l  ideas  needed 

t o  understand gas de t ec to r s .  

references f o r  de t a i l ed  der iva t ions  and a more complete discussion,  

worth not ing that t h e  theory of t hese  devices i s  i n t r i n s i c a l l y  d i f f i c u l t  

because i t  involves the t r anspor t  of and i n t e r a c t i o n s  among plasmas and 

gases ,  as w e l l  as t h e i r  i n t e r a c t i o n  with e l ec t rode  surfaces .  W e  then give 

our experimental r e s u l t s  and conclusions,  including our recommendations f o r  

The i n t e r e s t e d  reader  should consul t  the 

It is 
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an optimum gas detector. 

The technical assistance of J, U. Poulton, E. S, Zavada and R, E, 

Hiromoto in the construction and testing of various devices is gratefully 

acknowledged. 
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11. TH33ORY 

A. The Ion iza t ion  of Gases by Radioactive Sources 

The theory of the i n t e r a c t i o n  between r a d i a t i o n  and gases  is  discussed i n  

many places .  (2'7y15-18) The p i c t u r e  is simple: an alpha p a r t i c l e ,  a beta 

p a r t i c l e  o r  a gamma ray photon inc iden t  upon a gas  w i t h  s u f f i c i e n t  energy can 

knock out  an atomic e l e c t r o n  from a gas  atom, leaving behind a heavy, 

positively-charged atomic ion,  and a l i g h t ,  negat ive,  f r e e  e lec t ron ,  An 

i n t e r e s t i n g  and use fu l  f a c t  about t h i s  process is  that the average energy w 

l o s t  by r a d i a t i o n  i n  producing a s i n g l e  ion  p a i r  is  e s s e n t i a l l y  independent 

of the m a s s ,  charge and ve loc i ty  of t h e  bombarding p a r t i c l e ,  and depends 

only weakly on the na tu re  of the gas ,  (2) Some typical values  taken from 

Fulbr ight(2)  are given i n  Table I, along w i t h  the ion iza t ion  p o t e n t i a l  Io., 

Table I. Ioniza t ion  p o t e n t i a l  Io and average energy pe r  i o n  p a i r  w f o r  
several 

G a s  

Hydrogen 

H e l i u m  

Nitrogen 

Oxygen 

Argon 

Neon 

Krypton 

Xenon 

A i r  

Carbon Dioxide 

Methane 

15.4 

24.6 

15.5 

12.2 

15.8 

21.6 

14.0 

12.1 
-- 

13.7 

13.1, 

36.8 

41.3 

34.9 

31.3 

26.4 

35.9 

24.4 

22.1 

34.2 

32.7 

28.1 

Taken from Table 6 i n  re ference  2. a 
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That w is roughly twice as l a r g e  as I r e f l e c t s  the f a c t  that the energy l o s t  
0 

by t h e  bombarding r a d i a t i o n  can be d i s s i p a t e d  by m e a n s  o t h e r  than i o n i z a t i o n ,  

e.g., o p t i c a l  t r a n s i t i o n s ,  r e c o i l  energy, etc. 

The s p a t i a l  rate of energy l o s s  by r a d i a t i o n  has been s t u d i e d  t h e o r e t i c a l l y  

and experimental ly ,  For heavy charged p a r t i c l e s  (e.g,, protons and alphas)  

one used the Bethe-M(hller formula 

- -  dE = 4az2e4NZ 2 [ g (  2mv22 ) - dj 
IT(' - 6 

dx mv 

where 

E = k i n e t i c  energy of the bombarding p a r t i c l e  

dE - - =  
dx kinetic energy lo s s  pe r  u n i t  p a t h  l e n g t h  of the bombarding p a r t i c l e  

ze = charge of the bombarding p a r t i c l e  

v = v e l o c i t y  of the bombarding p a r t i c l e  

e = charge of the e l e c t r o n  

m = m a s s  of the e l e c t r o n  

c = speed of l i g h t  

IT = mean e x c i t a t i o n  energy (2?19) of t a r g e t  atoms 

3 N = number of atoms of t a r g e t  material pe r  cm 

Z = atomic number of atoms in t a r g e t  material. 

For bombarding relativist ic b e t a  p a r t i c l e s  ( e l ec t rons ) ,  one uses  another  of 

Bethe's r e s u l t s  

dE 
dx 

- -  t 
2 mv 

9 



For non- re l a t iv i s t i c  (B << 19 betas ,  equation (2) reduces t o  

? 

dE 4ne%?Z 
dx 

- -  = 
2 mv 

(3) 

where e t  is  the base of n a t u r a l  logarithms. 

When a bombarding p a r t i c l e  has l o s t  a l l  its k i n e t i c  energy i t  comes t o  

rest. 

i s  ca l l ed  t h e  range R, and is obtained by in t eg ra t ing  the d i f f e r e n t i a l  energy 

l o s s  of t he  p a r t i c l e  i n  t ravers ing  the t a r g e t  material: 

The d i s t ance  i t  has t rave led  i n  the  t a r g e t  material i n  coming t o  rest 

A FORTRAN program f o r  ca l cu la t ing  ranges of heavy charged p a r t i c l e s  i n  

chemical elements has been developed by Trower, (20) and some of i ts  r e s u l t s  

are ava i l ab le  i n  t abu la r  form, (21) 

I f  t h e  range R of t h e  bombarding p a r t i c l e  is less than the in t e re l ec t rode  

spacing d, then the number of i on  p a i r s  produced i n  the de tec tor  volume w i l l  

be the  same f o r  - a l l  values  of R regard less  of v a r i a t i o n s  i n  the gas densi ty ,  

However, i f  R > d,  t h e  number of ion  p a i r s  n produced by one ion iz ing  

p a r t i c l e  w i l l  be  

I 

The dependence of nI on the dens i ty  N of the de tec tor  gas is i n  genera l  

complicated f o r  R > d, bu t  is  approximately l i n e a r  under some circumstances, 

Since the de tec to r  cu r ren t  is  a func t ion  of nIs w e  see that the cur ren t  

varies w i t h  de t ec to r  gas dens i ty  only when R > d ,  

irrelevant f o r  glow tubes since their cur ren t  does not  depend on n 

This observation is 

1% 

10 



Next w e  consider the relative values  of n f o r  alpha, b e t a  and gamma I 
r ad ia t ion ,  a l l  o the r  parameters being he ld  constant.  

consider a 5 MeV a lpha and a 100 keV 

With IT - 50 e V ,  w e  g e t  the r a t i o  of their (--I values  as 

A s  a t y p i c a l  example, 

b e t a  (both are non- re l a t iv i s t i c ) ,  

dE 
dx 

2 
VB 
2 

V 
01 

2mva 2 

log - 
I T  

2=T 

2 
B log - 

mv 
= 310 >> 1 . 

This is q u i t e  general .  

v and v the  r a t i o  of (6) i s  dominated by the (v /v ) term. For most 

r ad ia t ions  v >> v . 
I f  w e  apply this  r e s u l t  t o  equat ion (5), w e  see that one alpha p a r t i c l e  

w i l l  produce s e v e r a l  o rders  of magnitude more i o n  p a i r s  i n  the gas de t ec to r  

than a s i n g l e  b e t a  p a r t i c l e  i f  R > d f o r  both p a r t i c l e s .  

g e t  the same number of ion p a i r s ,  one needs a b e t a  source w i t h  an a c t i v i t y  

several orders  of magnitude g r e a t e r  than an alpha source% 

reason that our i o n i z a t i o n  chamber and propor t iona l  counter de t ec to r  designs 

u t i l i z e  a lpha sources  only,  

is  t h a t  sh i e ld ing  problems are minimized since the range o f  alphas is much 

less than for  betas .  

Because of t he  weak dependence of t h e  logarithms on 

2 
a 8’  $ 0 1  

dE Thus (- z) is  much g r e a t e r  f o r  alphas than f o r  be t a s ,  B a 

Conversely, t o  

It is f o r  thts 

An i n c i d e n t a l  add i t iona l  advantage of a lphas 

The theory (7,15) of the i n t e r a c t i o n  of gamma ray  photons with m a t t e r  is 

not  s t ra ight forward  as three d i s t i n c t  processes  contr ibute:  

e f f e c t ,  Compton s c a t t e r i n g ,  and electron-posi t ron p a i r  production, W e  shall 

neglec t  gamma rays  from cons idera t ion  as a de tec to r  source  because the 

pho toe lec t r i c  

11 



probab i l i t y  of i n t e r a c t i o n  of a photon w i t h  matter is  less than f o r  a 

charged p a r t i c l e ,  and the r e s u l t i n g  r a t i o  of i o n  p a i r s  produced pe r  u n i t  

pa th  l eng th  by photons compares unfavorably w i t h  a lpha and b e t a  p a r t i c l e s .  

It is necessary t o  f i n d  alpha p a r t i c l e s  w h i c h  have s u f f i c i e n t l y  l a r g e  

ranges i n  gases  t o  allow the condi t ion R > d t o  be  s a t i s f i e d  f o r  reasonable 

i n t e r e l e c t r o d e  spacings. 

a i r  a t  15' C and 760 Torr (I5) is shown i n  Table 11. 

The range-energy r e l a t i o n  f o r  a lpha p a r t i c l e s  i n  

These numbers can b e  

Table 11. Energy and range f o r  alpha' p a r t i c l e s '  i< a i r  at' x.0' 'c anx 76'0- Torria 

Energy (MeV) Range (cm) 

1.0 0.52 

2.0 1.01 

3.0 1.67 

4.0 2.50 

5.0 3.51 

10.0 10.52 

15.0 21.50 

a Estimated from Figure 2 i n  re ference  15. 

used with N and Z ,  and equations (1) and ( 4 )  t o  ob ta in  approximate alpha 

p a r t i c l e  ranges i n  o the r  gases  a t  var ious d e n s i t i e s ,  i f  one assumes a l i n e a r  

dependence of (- -& on N. 

over one inch i n  air a t  15 

dE One notes  t h a t  5 MeV alphas have a range of 

C and l 'atmosphere,  0 It is only necessary t o  

check the condi t ion R > d a t  the h ighes t  gas dens i ty  (when the de tec to r  is 

f i l l e d ) ;  as the gas  dens i ty  decreases ,  R i nc reases  (see equations (1) and (421% 

12 



A rad ioac t ive  source used i n  an i o n i z a t i o n  chamber o r  propor t iona l  

counter gas  de t ec to r  must produce p a r t i c l e s  which have 1) s u f f i c i e n t l y  

h igh  energy t o  s a t i s f y  the R > d condi t ion,  2) a h a l f - l i f e  T long enough 

f o r  adequate a c t i v i t y  throughout the dura t ion  of the s p a c e c r a f t r s  mission 

(- 2 yea r s ) ,  3) a T 

excessively l a r g e  s u r f a c e  areas t o  g e t  an adequate a c t i v i t y  (since the p robab i l i t y  

f o r  a r ad ioac t ive  decay is  inverse ly  propor t iona l  t o  T 1/21 ? 

nucleus that is  s t a b l e  so that a unique a c t i v i t y  is  present  (thus s implifying 

the  ana lys i s  of the source emissions),  5)  s u f f i c i e n t l y  low penet ra t ing  power 

s o  that a minimum r a d i a t i o n  hazard exists 

6) a v a i l a b i l i t y  i n  a form which is easy t o  f a s t e n  i n s i d e  the gas de t ec to r ,  

re fe rence  purposes w e  have l i s t e d  i n  Tables 111 and I V  a l l  a lpha  and b e t a  

emitters s a t i s f y i n g  the r e l a t i o n  (2 years )  < T < (10 yea r s ) ,  since o the r  

sources  w i l l  no t  s a t i s f y  condi t ions 2) and 3) above, For the i o n i z a t i o n  

chamber and propor t iona l  counter designs w e  concent ra te  on alpha erqitters, f o r  

the reasons given above. 

nucl ide.  A r ad ioac t ive  f o i l  source is the most convenient form t o  f a s t e n  

i n s i d e  the gas  de t ec to r .  

which has ene rge t i c  a lphas (5.44 and 5.49 MeV), a 458 year  ha l f - l i f e ,  and 

reasonable s p e c i f i c  a c t i v i t i e s  (- 250 microcuries per  crn ), 

gaseous decay products,  a lower s p e c i f i c  a c t i v i t y  (since T 

b e t a  and g a m a  a c t i v i t y  which is  hard t o  s h i e l d ,  

have acceptable  p r o p e r t i e s  bu t  are not  r e a d i l y  ava i l ab le  i n  any form, 

1 /2  

s h o r t  enough s o  that one need n o t  use g r e a t  amounts o r  
1/2 

4) a daughter 

ou t s ide  the de tec tor ,  and 

For 

4 
I/ 2 

A v a i l a b i l i t y  (22) is  a key f a c t o r  i n  the choice of 

(23) A r e a d i l y  ava i l ab le  f o i l  source is Americium-241, 

2 Radium-226 has 

= 1600 yea r s ) ,  and 
1 /2  

Gadolinium-148 and Polonium-209 

Plutonium-238 f o i l s  are not  a v a i l a b l e  a t  

has begun work on their production, The 

r e a d i l y  ava i l ab le  o r  have ha l f - l ives  too 

condi t ion 3) because of the low s p e c i f i c  

present  bu t  Monsanto (Dayton, Ohio) 

remaining alpha sources  either are no t  

long o r  too  s h o r t ,  A long T v i o l a t e s  

a c t i v i t y ,  
I/ 2 

13 



4 a Table 111. Alpha emitters w i t h  half-lives T between 2 and 10 years, 
, - .  , . - .  ~ ~. , 

b 
P r i n c i p l e  o r  

Nuclide T (yr) Average Alpha Daughter Ti12 of Comments 
1/ 2 Energy (MeV) Daughter 

Gd-148 

PO-208 

PO-209 

Ra-226 

Th-228 

Pu-236 

Pu-238 

Pu-240 

Am-241 

Am-242m 

Am-243 

Cm-243 

Cm-244 

Cm-245 

Cm-246 

C f  -249 

Cf -250 

Cf -25 1 

84 

3 

10 3 

1600 

1.9 

2.85 

86.4 

6580 

45 8 

15 2 

8000 

32 

17.6 

9 300 

5500 

360 

13.2 

800 

3.18 

5.11 

4.88 

4.78 

5.4 

5.76 

5.49 

5.16 

5.48 

5.21 

5.27 

5.79 

5.8 

5.35 

5.38 

5.81 

6.02 

5.85 

Sm-144 

Pb-204 

Pb-205 

Rn-222 

Ra-224 

U-232 

U-234 

U-236 

Np-237 

Np-238 

Np-239 

Pu-239 

Pu-240 

Pu-241 

Pu-242 

Cm-245 

Cm-246 

Cm-247 

S t a b l e  NRA 

S t a b l e  Short  T 
1/ 2 

NRA 7 3 x 10 y r  

3.8 days See T e x t  

3.64 days Short  T 

72 y r  Short  T 

112 

1 /2  
5 

7 

6 

2.5 x 10 

2.4 x 10 

2 x 10 

y r  S e e  Text 

y r  Long T 

y r  See  Text 

1/2 

2 - 1  days NRA 

2.35 days NRA 

2.4 x lo4  y r  NRA 

6580 y r  NRA 

13.2 y r  NRA 

5 3.8 x 10 y r  NRA 

9300 y r  NRA 

5500 y r  NRA 

7 1.6 x 10 y r  NRA 

Data taken from C. M. Lederer,  J. M. Hollander and I, Perlman, Table of 
I so topes ,  S i x t h  Ed i t ion  (John Wiley & Sons, New York, 1967). 

NRA = Not r e a d i l y  ava i l ab le .  

a 
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4 a Table IV, Beta e m i t t e r s  w i t h  ha l f - l i ves  T between 2 and 10 yea r s ,  
, I A/?. ,, , . . ,, . ~. 1. ,. . . . . " .  . , ~ _ I  ,~ , - _I - .  

Maximum Beta 
T qf Daughter 

, . ,, . . , ,, , . , , I .  ~, . ~. . yc, ~ " , , - .  . 
Nuclide 5 2  e r )  Energy (MeV) Daughter 

H-3 12.3 0.0186 He-3 Stable 

C-14 5730 0.156 N-14 S t a b l e  

Na-22 2.6 1.82 Ne-22 S t a b l e  

Si-32 650 0.21 P-32 14.3 days 

A-39 269 0.565 K-39 S t a b l e  

A-42 33 (3.52 from K-42) K-42 12,4 hr 

CO-60 5.3 

Ni-6 3 92 

Kr-85 

Sr-90 

Ru-106 

Cd-113m 

Sn-12lm 

Sb-125 

CS-134 

CS-137 

Pm-147 

Eu-154 

Eu-155 

Ho-l66m 

Tm-17 1 

OS-194 

T1-204 

10.76 

28 

1 

14  

76 

2.7 

2 

30 

2.6 

16 

1.8 

1200 

1.9 

6 

3.8 

0,313 Ni-60 S t a b l e  

0.067 CU-6 3 S t a b l e  

0,67 Rb -85 

0.546 Y-90 

0.039(3.54 from Rh-106) Rh-106 

0.580 In-113 

0.420 Sb-121 

0.61 Te-125m 

0.662 Ba-134 

1.176 Ba-137m 

0.224 Sm-147 

1.85 Gd-154 

0.25 Gd-155 

0.07 Er-166 

0.097 Yb-171 (Yb-17Im) 

0,053 Ir -19 4m 

0,766 Pb-204 

S t a b l e  

64 hr 

30 sec 

S t a b l e  

S t a b l e  

58 days 

S t a b l e  

2-55 min 

S t a b l e  

S t a b l e  

S t a b l e  

S t a b l e  

S t a b l e  (8 days) 

47 sec 

S t a b l e  

15 



Table I V .  Cont. : 

M a x i m u m  B e t a  
T of Daughter 

” .  , y2*. , 

Nuclide T1,2 (Yr) Energy (MeV) Daughter 

Pb-210 21  0.061 Bi-210 5 days 

Ra-228 6.7 0.05 AC-228 6.13 hr 

AC-227 22 0.046 Th-2 2 7 18.2 days 

PU-241 13.2 0.021 Am-241 458 y r  

Data taken from C. M. Lederer ,  J ,  M, Hollander and I, Perlman, Table of 
I so topes ,  S i x t h  Ed i t ion  (John Wiley Sr Sons, New York, 1967). 

a 
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W e  have considered the  f e a s i b i l i t y  of using Argon-39 o r  Krypton-85 

as a combined b e t a  source - de tec to r  gas f o r  the ion iza t ion  chamber and 

propor t iona l  counter. While the r a d i a t i o n  hazard is not  neg l ig ib l e ,  this 

presents  an amusing so lu t ion  t o  t h e  problem of mounting the rad ioac t ive  source 

i n  t h e  de tec tor .  

temperature and pressure  has an a c t i v i t y  of 60 m i l l i c u r i e s  (1.5 cur ies ) ,  

activit ies are roughly equivalent  t o  a 200 microcurie (5 m i l l i c u r i e )  alpha 

source (see equat ion (6)) ,  respec t ive ly ,  i n  terms of ion  p a i r  production. 

W e  c a l c u l a t e  t h a t  1 cm’ of A-39 (Kr-85) a t  standard 

These 

F ina l ly ,  w e  consider the rad ioac t ive  source requirements f o r  a glow 

tube. Radiation i n  some form ( l i g h t ,  r ad ioac t iv i ty )  is  necessary f o r  t he  most 

e f f e c t i v e  f i r i n g  of a glow tube, bu t  is not  needed t o  s u s t a i n  the  cur ren t  once 

breakdown has occurred. 

source is he lp fu l  i n  f i r i n g  t h e  tube, bu t  one need not  worry about t h e  R > d 

condition. One p o s s i b i l i t y  i s  t o  add a s m a l l  amount (- 1 pCi) of A-39 o r  Kr-85 

t o  t h e  glow tube gas. Al te rna t ive ly ,  one could so lde r  i n t o  the de tec to r  a 

s m a l l  p i e c e  (- 1 pCi) of rad ioac t ive  metal, f o r  example, Cobalt-60. 

e l ec t rodes  are used, they can be i r r a d i a t e d  w i t h  thermal neutrons t o  a c t i v a t e  

Ni-63, a b e t a  e m i t t e r .  

Because t h e  de t ec to r  is  l i g h t  t i g h t ,  a weak rad ioac t ive  

I f  n i cke l  

B. Ion iza t ion  Chambers 

The ion iza t ion  chamber (2-7) is a low cur ren t  - low vol tage  device which 

can be used f o r  de tec t ing  r ad ia t ion  - produced ion iza t ion  i n  gases ,  and has 

been u t i l i z e d  in  commercial rad ioac t ive  ion iza t ion  pressure  gauges, 

configurat ion i s  the p a r a l l e l  p l a t e  geometry, as shown i n  Figure 3, 

r i ng  serves two functions: i t  makes the electric f i e l d  between the two 

The  usual  

The guard 

e lec t rodes  more homogeneous by minimizing edge e f f e c t s ,  and allows one t o  

ignore leakage cu r ren t s  through the insu la to r s .  The theory of the dynamics 

17 



ELECTRODES 

ical parallel p l  ionization chamber. (a) Side view 
schematic. (b) 
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of the i o n  and gas movements i n  this device is very complicated, 

the m a i n  processes  below, 

i s  the process  whereby a p o s i t i v e  i o n  

t o  form a n e u t r a l  atom. The rate of recombination is given by 

- an n - -  - - -  dn+ - dne 
d t  d t  + e  * 

where n+ and ne are the number of p o s i t i v e  ions  and e l ec t rons ,  respec t ive ly ,  

pe r  u n i t  volume, and a is the c o e f f i c i e n t  of recombination, 

n 

Since n+ and 

are both propor t iona l  t o  n e I i n  ion iza t ion  chambers, we  see that 

- -  - -  dne 
d t  d t  J 

i f  nI is a linear func t ion  of the gas dens i ty  N ,  

more of a problem as the gas dens i ty  increases, 

con t r ibu te  t o  the de tec to r  cur ren t .  

recombination processes:  

sensitive volume), 2) columnar recombination (along the track of the 

Thus recombination becomes 

Ions w h i c h  recombine do no t  
1 

One usua l ly  speaks of three kinds of 

1) volume recombination (throughout the i n t e r e l e c t r o d e  

bombarding p a r t i c l e ) ,  and 3) p r e f e r e n t i a l  recombination (of slow e l ec t rons  

near the p o s i t i v e  ion  from which they w e r e  o r i g i n a l l y  detached),  

of recombination mechanisms and t y p i c a l  values  are given i n  the re fe rences t  

Discussion 

(2-7 z 

Elec t ron  attachment r e f e r s  t o  the capture  of an e l e c t r o n  by a n e u t r a l  

molecule t o  form a negat ive  ion,  It is a l a r g e  e f f e c t  i n  02, H20, NH3, 

ogens, and is n e g l i g i b l e  i n  N2$ H2, C 0 2 h  C 

is process  e f f e c t i v e l y  changes the m a s s  of a neg 

(electron)  t o  very heavy (molecule with at tached e l e c t r o n ) ,  

dens i ty  J - of the negat ive  ions  is given by 

J - = n  - e v -  , (9 1 
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where v is the d r i f t  ve loc i ty  of t h e  negat ive ions,  I n  the same electric 

f i e l d ,  a heavy ion  has a much smaller d r i f t  ve loc i ty  than does an electron.  

Hence e l ec t ron  attachment tends t o  decrease the de tec to r  cur ren t ,  

- 

L e t  us  now consider t he  behavior of t h e  atomic ions  a f t e r  their creat ion.  

The atomic ions  thermalize l o c a l l y  ( in  space) with a temperature c lose  t o  that 

of t h e  n e u t r a l  gas atoms of t h e  de tec tor ,  Superimposed on their f a s t  random 

thermal motions is  a slow d r i f t  ve loc i ty  toward one of the e lec t rodes  (e,g,, 

t h e  p o s i t i v e  ions  toward t h e  cathode), One f i n d s  experimentally 

d i f fus ion  of ions that 

.A 
where v is t h e  d r i f t  ve loc i ty  (<< thermal ve loc i ty )  of the p o s i t i v e  and 

negat ive atomic ions ,  respec t ive ly  

electric f i e l d ,  and P is t h e  gas pressure  a t  normal temperature (0' C), 

+ 
Is - 

i s  their mobil i ty ,  E is the appl ied p+ - 

Ionic  mobil i ty  depends on t h e  charge and m a s s  of t h e  i o n  and on the na tu re  of the 

hos t  gas, and t y p i c a l  values  are given i n  the references,  (2F7 1 

The behavior of t h e  f r e e  e l ec t rons  is  s l i g h t l y  more complicated. 

Because of t h e  s m a l l  electron-to-ion m a s s  r a t i o ,  e l ec t rons  cannot l o s e  much 

k i n e t i c  energy i n  elastic c o l l i s i o n s  wi th  t h e  much heavier gas atoms, and 

hence only l o s e  energy i n  inelastic c o l l i s i o n s  i n  which they e x c i t e  t h e  gas 

atoms, The  energies  of t h e  lowest-lying exc i ted  states of monatomic (i.e., 

r a re )  gas atoms are t y p i c a l l y  -. 10 e V  above their ground states. Thus t h e  

f r e e  e l ec t rons  quickly a t t a i n  an average "agi ta t ion  energy'' of 10 e V  f o r  

t h e i r  random thermal motions, s i n c e  e l ec t rons  of g r e a t e r  energy rap id ly  
a 

e x c i t e  the gas atoms. The electric f i e l d  E accelerates the e lec t rons  

up t o  10 eV. W e  do not  call  this a "thermal energy" because the ve loc i ty  

d i s t r i b u t i o n  is  usua l ly  not  Maxwellian, W e  no te  that the e lec t rons  are 

20 



much "hotter" than the atomic ions  o r  gas molecules (kT T. ,025 e V  a t  room 

temperature). 

Superimposed upon the a g i t a t i o n  motion of the e l e c t r o n s  i s  their 
A 

d i f f u s i o n  toward the anode w i t h  a d r i f t  ve loc i ty  v 

u. Typical ly  

C< m s  a g i t a t i o n  v e l o c i t y  e 

A 
e l o 3  $+ 

- 
so  that the e l ec t rons  d r i f t  much f a s t e r  than the atomic ions ,  as expected, 

W e  g e t  more i n s i g h t  by r e c a l l i n g  the simple theory of d r i f t  ve loc i ty  

which g ives  

(3 p 24) 

where T is the mean f r e e  t i m e  between co l l i s ions , ,  The assumptions i n  this 

crude theory are that a l l  the e l ec t rons  have the same a g i t a t i o n  energy 

Ea = 1/2  m u2, and t h a t  the s c a t t e r i n g  is  i s o t r o p i c ,  W e  can w r i t e  the mean 

f r e e  path A as 

A =  UT . 
Thus 

Hence a l a r g e  a g i t a t i o n  energy E l eads  t o  a low d r i f t  ve loc i ty ,  One can 

decrease E 

percent  N Z p  GO2' CH4, o r  some o ther  polyatomic gas ,  

r o t a t i o n a l  and v i b r a t i o n a l  states - 1 e V  above their ground state, s o  t h a t  

the a g i t a t i o n  energy of the e l ec t rons  is  reduced by a f a c t o r  of roughly ten.  

a 
rl, and thus inc rease  v i n  rare gas de t ec to r s  by adding a few a' e' 

The latter have exc i ted  
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T h i s  increases the mean f r e e  pa th  A, too,  

phenomenon c a l l e d  the Ramsauer e f f e c t ,  

s c a t t e r i n g  of e l ec t rons  by 

inc iden t  e l e c t r o n  k i n e t i c  energy. 

Because of a qu 

The add i t ion  of a s m a l l  polyatomi 

gas  reduces the e l e c t r o n  attachment t o  

The p robab i l i t y  f o r  t h i s  lat ter process has a minimum f o r  e l ec t rons  of energy 

1 eV. It has been found experimentally(2) that  0.1% O2 i n  pure argon leads  

t o  s i g n i f i c a n t  e l e c t r o n  attachment, bu t  that the add i t ion  of 2% C02 (or CH4 

o r  N ) t o  this  mixture  reduces the attachment. 2 

Consider now the operat ion of a d i r e c t  cur ren t  (dc) i on iza t ion  chamber 

i n  the presence of a source of constant  a c t i v i t y ,  

chambers and propor t iona l  counters are more use fu l  i n  nuclear  physics f o r  

de tec t ing  ind iv idua l  r ad ia t ions ,  

region,  the i o n  p a i r s  i n  the gas are produced only by the bombarding r ad ia t ion?  

there is  no mul t ip l i ca t ion ,  

Fas t  pu l se  i o n i z a t i o n  

Recal3, that i n  the ion iza t ion  chamber 

The  cu r ren t  versus  vo l t age  curve f o r  a t y p i c a l  

chamber a t  f ixed  gas dens i ty  i s  shown i n  Figure 2, 0 t o  B, 

a l l  the i o n  p a i r s  are co l l ec t ed  by the e lec t rodes :  ve is small due t o  the 

s m a l l  E (= V/d i n  a p a r a l l e l  p l a t e  device) ,  and many of the ions  recombine 

before  reaching the e lec t rode ,  

From 0 t o  A, n o t  

rL 

J 

Others d i f f u s e  out  of the %ensitive region" 

of the chamber and are no t  co l lec ted ,  The segment A t o  B 

a l l  the i o n  p a i r s  are 

enough so that recombination is negl ig ib le .  

a l le l  p l a t e  i on iza t ion  chambers are o f t e n  neg l ig ib l e ,  al though 

w e  lated(3) s i g n i f i c a n t  space charges f o r  some of our experimental  

condi t ions,  
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The expected cur ren t  is  e a s i l y  estimated, I f  w e  have an alpha source 

7 w i t h  an e f f e c t i v e  a c t i v i t y  of 1 m C i  (= 3,7 x 10 d i s in t eg ra t ions  per  second) 

and an alpha energy 

each alpha p a r t i c l e  

number of i o n  p a i r s  

n =  I 

of 5 MeV, assume that 2.5 MeV is l o s t  on the average by 

i n  the chamber, and take  a w va lue  of 30 eV, then the 

produced per  second is 

12 -1 6 
,., 3 x 10 sec % 

(2-5 x 10 eV) (3.7 x l o7  sec-') 
30 e V  

Each ion  p a i r  cont r ibu tes  e i n  electric charge t o  t h e  current .  ('I I n  the  

s teady state of dc  operat ion a t  sa tu ra t ion ,  a l l  the ion  p a i r s  produced by the  

r ad ia t ion  i n  one second are col lec ted  by the  e lec t rodes  i n  the same time 

period. Hence, the cur ren t  I through t h e  chamber w i l l  be  

e - 4.8 x A e I I =  

Note i n  Table I t h a t  a l l  gases  have t h e  same w value (- 30 eV) wi th in  

about 30 - 40%. Our conclusion is  that a l l  gases w i l l  have the  same order of 

magnitude s a t u r a t i o n  cur ren t  i n  a dc ion iza t ion  chamber with a given constant  

a c t i v i t y  source a t  a given f i l l i n g  pressure,  Furthermore, f o r  reasonable 

alpha sources (5 MeV energy with < 1 m C i  a c t i v i t y ) ,  t he  cur ren ts  w i l l  

t y p i c a l l y  be  less than A. Actually,  it is  d i f f i c u l t  t o  f ind  s m a l l  a lpha 

sources wi th  a c t i v i t i e s  of 1 m C i ,  and w e  s h a l l  see t h a t  a cur ren t  1 3 x A 

is  our experimental maximum. These cur ren ts  are d i f f i c u l t  t o  d e t e c t  under 

t h e  cons t r a in t s  of f l i g h t  conditions.  

W e  have considered t h e  p o s s i b i l i t y  of increasing these s m a l l  cur ren ts  by 

operating i n  an a l t e r n a t i n g  cu r ren t  (ac) mode. Perhaps, w e  thought, t he  

s m a l l  ac cu r ren t s  could be amplified,  and t h e  amplified output could then 

(hopefully) be propor t iona l  t o  t h e  gas dens i ty ,  I f  t h e  chamber is  
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represented as an i n t e r e l e c t r o d e  capaci tance C i n  p a r a l l e l  with a l a r g e  

<< % leakage resistance % (the ionized gas) ,  the capac i t i ve  reactance Xc 

f o r  any reasonable p a r a l l e l  p l a t e  o r  coaxia l  geometry a t  low audio 

frequencies.  Thus the net impedance of the chamber is  e n t i r e l y  determined by 

%" Xc, and the ac cur ren t  would be  insensitive t o  changes i n  

Figure 4 shows a rough p l o t  of the gas dens i ty  dependence (pressure 

dependence i f  the temperature is  f ixed )  of the i o n i z a t i o n  chamber cur ren t  a t  

f ixed  vol tage.  

A t  h igh  d e n s i t i e s ,  the curve bends over i f  the electric f i e l d  E is  no t  

The dependence is approximately linear except a t  the extremes, 
r;l, 

s u f f i c i e n t l y  l a r g e  t o  avoid recombination l o s s e s ,  whereas a t  very low gas 

d e n s i t i e s  there is a r e s i d u a l  cur ren t  A,'6) The latter is  not  

conducted v i a  the gas,  bu t  is due t o  e l ec t rons  and o the r  ions  produced a t  the  

w a l l s  and e l ec t rodes  by the ioniz ing  particles. 

C. P ropor t iona l  Counters 

Many of the ideas  of the last  s e c t i o n  apply equal ly  w e l l  t o  propor t iona l  

counters (3-5 97-9), and we i n d i c a t e  here only the new f e a t u r e s  

counters are usua l ly  designed w i t h  a coaxia l  geometry, t o  take  advantage of 

Propor t iona l  

the l a r g e  f i e l d s  

E a t  a d i s t ance  r 

near the c e n t r a l  e l ec t rode ,  The electric f i e l d  magnitude 

r from the axis of the counter is  

where a is  the ou t s ide  r ad ius  of the inner  conductor w i r e ,  b is  the inner  

rad ius  of the ou t s ide  c y l i n d r i c a l  conductor, and V is the vol tage  across  the 

counter.  Cyl indr ica l  guard r ings  are o f t e n  used w i t h  this geometry. 

t o  the center e l ec t rode  w i r e ,  which is  maintained a t  a p o s i t i v e  p o l a r i t y ,  

the electric f i e l d  Er becomes l a rge ,  and e l ec t rons  produced by the ioniz ing  

Close 
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LOSSES 

1 GAS DENSITY 
(ARBITRARY UNITS) 

Figure 4. Typical gas densi ty dependence o f  i on i za t i on  chamber current  
a t  f i x e d  voltage. 
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r a d i a t i o n  can themselves attain s u f f i c i e n t  energy between c o l l i s i o n s  t o  

ion ize  a d d i t i o n a l  gas  molecules and thus produce more e l ec t rons ,  

relate the average t o t a l  number of secondary e l ec t rons  n produced by a 

s i n g l e  primary e l e c t r o n  t o  the m u l t i p l i c a t i o n  f a c t o r  M, 

photons are given off  i n  the avalanche process ,  and that these photons can 

eject e l ec t rons  from the w a l l s  of the conta iner  and from the gas molecules, 

I f  y (<< 1) is  the average number of photoelectrons produced by one i o n  p a i r  

i n  the gas ,  then the i n i t i a l  avalanche due t o  one primary e l ec t ron  produces 

ny photoelectrons,  and the la t ter  mul t ip ly  by the f a c t o r  n before  c o l l e c t i o n  

at  the anode t o  g ive  a t o t a l  of n y e lec t rons ,  

L e t  us 

Recall that many 

2 2 2  The latter produce n y 

photoelectrons which mul t ip ly  

co l l ec t ion ,  and so on. Hence 

2 M = n + n y +  

by n t o  g ive  n3y2 t o t a l  e l ec t rons  before  

the t o t a l  m u l t i p l i c a t i o n  M is  

n 3 y 2 + .  . . . . 
o r  

n LI M =  -- (19 1 1 - n y  ’ 
i f  ny < 1, In the l i m i t  ny << 1, equat ion (19) becomes 

M - n ,  

Equation (20) is the condi t ion f o r  a “proport ional“  counter i n  that the output 

cu r ren t  of the counter is  propor t iona l  t o  the number of primary e l ec t rons  

produced by the ioniz ing  r a d i a t i o n  i f  photoelectron production is  neg l ig ib l e .  

In  the above treatment w e  are ignoring recombination and e l ec t ron  attachment 

losses .  Space charge e f f e c t s  are o f t e n  neg l ig ib l e ,  For l a r g e  electric 

f i e l d s ,  s m a l l  ion iz ing  r a d i a t i o n  a c t i v i t y ,  and n not  too la rge ,  these are 

v a l i d  approximations. 
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As ny approaches uni ty ,  the counter  becomes non-proportional, and t h e  

m u l t i p l i c a t i o n  very la rge .  

t e l l i n g  us that a self-maintaining discharge would b e  set up (e,g,, Geiger- 

Muller counter,  glow tube, e t c . ) ,  

(n va r i a t ion )  b u t  a l s o  on the pho toe lec t r i c  p rope r t i e s  of the e l ec t rodes  

4 (y va r i a t ion ) .  

A t  ny = 1 the m u l t i p l i c a t i o n  is i n f i n i t e ,  

This depends no t  only on the gas 

Values of M up t o  10 can b e  obtained, bu t  operat ion becomes 

uns tab le  when ny + 1, i.e., when n is l a rge .  

The current-voltage characteristics of a t y p i c a l  propor t iona l  counter  

i n  the dc  mode w i t h  f ixed  gas dens i ty  and constant  r a d i a t i o n  a c t i v i t y  are 

shown i n  Figure 2, B t o  C ,  The cur ren t  is  given by 

I = e n M .  I 

A s i m p l e  theory i n  f a i r l y  good agreement w i t h  experiment(4) gives  

where k and k' are constants  f o r  a given gas,  and P is the pressure  a t  f ixed  

temperature. b 
a I f  V >> k' (aP)ln(-) (= threshold vol tage  f o r  mul t ip l i ca t ion ) ,  

then w e  g e t  

Hence I i s  an exponent ia l  func t ion  of V and is  approximately propor t iona l  

t o  the gas  dens i ty  through the A Neither dependence is t r u e  f o r  

lower vol tages .  Furthermore, at  low gas d e n s i t i e s  (* 1 t o r r  a t  room 

temperature) where the mean f r e e  pa th  of the e l ec t rons  becomes l a r g e ,  n 

becomes l a rge ,  and M changes r ap id ly  w i t h  v a r i a t i o n s  i n  both  V and the gas  

dens i ty ,  

f a c t o r ,  I 

M e  would expect the add i t ion  of a s m a l l  amount of C02 o r  CH4 t o  a 
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rare gas i n  the counter t o  smooth out  these rap id  va r i a t ions  by lowering 

the  e l e c t r o n i c  a g i t a t i o n  energy, 

3 Since mul t ip l i ca t ions  of l o 2  t o  10 are reasonable i n  proport ional  

A, 
-7 counters and s i n c e  t y p i c a l  i on iza t ion  chamber cu r ren t s  go up t o  10 

proport ional  counters should g ive  cu r ren t s  up t o  10 

2 1000 V. 

experimental r e s u l t s .  

-5 o r  lom4 A a t  vol tages  

W e  s h a l l  see many of the fea tu res  of this discussion i n  our 

D. Glow Tubes 

Cold cathode glow tubes (10-14) are usual ly  constructed w i t h  a coaxia l  

geometry o r  else with two p a r a l l e l  conducting rods enclosed i n  a g l a s s  

container.  

r e s idua l  i on iza t ion  a t  low vol tages ,  and then ‘Breaks downt2 t o  g ive  cur ren ts  

- 1 mA a t  some vol tage  Vs ca l l ed ,  var ious ly ,  the s t r i k i n g ,  breakdown, f i r i n g ,  

sparking, i g n i t i o n ,  o r  s t a r t i n g  voltage.  The tube is usua l ly  operated i n  

t h e  normal glow discharge region (E t o  F i n  Figure 2) a t  a running (or 

maintaining) vol tage  V w i t h  Vs Vr,  Glow tubes are self-maintaining i n  

that they will continue t o  run a t  normal glow even i f  t he  cause of t h e  

r e s i d u a l  i on iza t ion  (which is necessary f o r  breakdown) is  removed a f t e r  t he  

tube has  been f i r e d .  Cosmic rays are a n a t u r a l  cont r ibu tor  t o  the  r e s idua l  

ion iza t ion .  

and many manufacturers add a s m a l l  amount (- 1 pCi) of H-3 o r  Kr-85 t o  

commercial glow tubes so that t h e i r  c h a r a c t e r i s t i c s  w i l l  no t  change too much 

i f  they are operated i n  the dark. 

The device t y p i c a l l y  has a low cur ren t  (<< 1 mA) due t o  

r’ 

External  l i g h t  and rad ioac t ive  sources are much more e f f e c t i v e ,  

I f  a device is t o  be se l f -main ta in ing  %n the normal glow region, i t  must 

produce new i o n  p a i r s  i n  the gas t o  rep lace  those that are col lec ted  a t  the 
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e lec t rodes .  

p ropor t iona l  counter regime, 

n e u t r a l i z e  by combining w i t h  an e l ec t ron ,  there is  a f i n i t e  p robab i l i t y  that 

one o r  more extra e l ec t rons  w i l l  b e  e j ec t ed  from the cathode su r face  t o  

con t r ibu te  t o  the e l e c t r o n  avalanche and i n t e r e l e c t r o d e  current .  

The chief  m e c h a n i s m  is one that is  usua l ly  n e g l i g i b l e  i n  the 

m e n  the p o s i t i v e  ions  reach the cathode and 

T h i s  process  

of e l e c t r o n  production by p o s i t i v e  i o n  bombardment depends on the 

p rope r t i e s  of the cathode material and s u r f a c e  as w e l l  as those of the gas,  

and is usua l ly  s t ronger  than photoelectron production, 

The theory of glow tubes is very involved and w e  d i scuss  here only a 

few po in t s  which he lp  i n  understanding their design and operation. 

characteristic is  that glow tubes always have a l a r g e  space charge. I n  

f a c t ,  most of the vol tage  drop across  a tube i n  the normal glow discharge 

regime occurs i n  a s m a l l  region near  the cathode occupied by a r e l a t i v e l y  

l a r g e  number of p o s i t i v e  ions  and only a few e lec t rons .  

“cathode f a l l “  is  where most of the glow of the tube occurs.  

t he  i n t e r e l e c t r o d e  spacing, c a l l e d  the plasma, has roughly equal numbers of 

p o s i t i v e  atomic $oris and e lec t rons .  

A f i r s t  

This region of the 

The rest of 

A second f e a t u r e  is that the cur ren t  dens i ty  J (current  per  uni t  area of 

the cathode) i n  the normal glow discharge  reg ion  i s  approximately a constant ,  

Thus, as one goes from E t o  F i n  Figure 2,  the amount of glow spreads from 

a s m a l l  p a r t  of the cathode (at E) u n t i l  the entire l e n g t h  of the cathode is 

glowing (at F) .  

dens i ty ,  w h i l e  the unglowing p a r t  has n e g l i g i b l e  cur ren t .  

the cathode covered by the glow is propor t iona l  t o  the t o t a l  cur ren t  I 

through the tube,  

The glowing region along the cathode has f ixed  cu r ren t  

Tfius the area of 

One can show (lo) that 

J 0~ (gas dens i ty )  . (24) 
2 
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An approximate r u l e  w i t h  considerable  t h e o r e t i c a l  and experimental  

v a l i d i t y  is  Paschen‘s Law, which states that a t  f ixed  temperature and with 

p a r a l l e l  p l a t e s ,  the breakdown vol tage  V 

the pressure  P and d i s t ance  d between the two p a r a l l e l  e lec t rodes :  

i s  a func t ion  of the product of 
S 

= f(Pd) . 
vS 

The funct ion  f depends on the gas  and on the cathode material and su r face ,  

For v a r i a b l e  temperatures,  one reads “gas density‘( f o r  P, 

r e l a t e d  r e s u l t s  f o r  o the r  geometries,  

vo l tage  V is expected t h e o r e t i c a l l y  t o  b e  l a r g e  a t  bo th  high and low gas 

d e n s i t i e s ,  and t o  pass  through a minimum i n  between, 

obvious. A t  h igh  d e n s i t i e s  the e l ec t ron  mean f r e e  p a t h  is s h o r t ,  s o  that i t  

does not  acqui re  much energy between c o l l i s i o n s ,  and thus does not  usua l ly  

possess s u f f i c i e n t  energy t o  ion ize  gas  atoms and produce an e l e c t r o n  

avalanche. 

an e l e c t r o n  avalanche is  not  probable. 

One can deduce 

In  a f ixed  geometry the breakdown 

S 

Qual i t a t ive ly  this is 

There are no t  many gas atoms ava i l ab le  a t  low d e n s i t i e s ,  s o  that 

One can reduce V and V through the use of Penning mixtures such as 
S 1; 

99 1/2% N e  - 1/2% A (or 99 1/2% H e  - 1/2% A), 

t he  neon atoms, i n  add i t ion  being ionized,  are exc i t ed  t o  metastable  states 

(Ne*) which have a long l i f e t i m e  (-- 10” - 
between atomic c o l l i s i o n s  (- lo-’’ sec) or  the mean l i f e t i m e  f o r  r a d i a t i v e  

de-exci ta t ion (- 10 - sec )  , The energy of Ne*  is 16,6 e V  (relative 

t o  i t s  ground state), w h i l e  the i o n i z a t i o n  energy Io of argon is 15,8 eV,  

an e n e r g e t i c a l l y  allowed r eac t ion  is 

During the e l e c t r o n  avalanche, 

sec)  compared t o  the mean time 

-7 

T h u s  

(26) Ne* + A -+ N e  + A+ + e” , 

The Ne* can produce an argon i o n  A+ and an e l e c t r o n  e-, 

states can be  turned i n t o  argon ions  and e l ec t rons ,  thus  enhancing the 

Hence neon metas tab le  
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i on iza t ion  of the system as compared with 

occur. 

most commonly used, 

s t r i k i n g  vol tage  Vs and the running vol tage  V r >  an e f f e c t  which i s  most 

pronounced in the Ne-A mixture,  

argon admixtures between 0.1 and 1.0% i n  a neon glow tube, 

admixtures there are i n s u f f i c i e n t  argon atoms, and a t  admixtures higher 

than 1%, e lec t rons  begin t o  ion ize  argon d i r e c t l y  s o  that the tube 

behaves more like an argon device,  

The l a r g e s t  e f f e c t  is f o r  N e  - A and He - A, and they are thus 

The e f f e c t  of the increased ion iza t ion  is  t o  lower the 

One observes a minimm i n  Vs and Vr w i t h  

A t  lower 

A few words about the e f f e c t  of the cathode material and su r face  are i n  

order.  Early workers i n  this f i e l d  found that the breakdown vol tage Vs 

(111 f o r  a given gas  a t  a given pressure  was  independent of the cathode material, 

Later work showed that these r e s u l t s  were caused by <'dirty(' cathode sur faces ,  

e.g., oxides ,  adsorbed gases ,  etc, With modern outgassing techniques i n  

h igh  vacuums, one can ob ta in  clean sur faces  an 

and Vr on the cathode materials, Acton and Swift"" g i v e  the measured 

values  of the m i n i m u m  running vol tage  e f o r  99 112% N e  - 1/2% A mixtures 

ee the dependence of Vs 



p a r t i c u l a r  va lue  of (Pd) for a given gas  and cathode, It is i m  

emphasize that h igh  p u r i t y  gases  and c a r e f u l  

techniques m u s t  b e  used i n  order  t o  ob t  

It should a l s o  be  men 

material is n o t  as no t i ceab le  at  h igh  gas  den 

room temperature),  

oned that the dependence of V 

(10 1 

A process  of considerable  importance is . The p o s i t i v e  ions  

bombarding the cathode can eject atoms as w e l l  as electrons, tending t o  

destroy the cathode and depos i t  cathode material on the w a l l s  of the device,  

A crude e m p i r i c a l  r u l e  p r e d i c t s  that the rate of spu t t e r ing  is very roughly 

propor t iona l  t o  the inve r se  f i f t h  power of the gas  dens i ty ,  

atoms a l s o  tend t o  absorb gas  molecules (even the rare gases ,  a l though a t  

a slower rate than o the r  gases)  on their way from the cathode t o  the w a l l s ,  

and thus t o  reduce the gas  dens i ty  and speed up the rate o f  spu t t e r ing ,  

This runaway process  w i l l  eventua l ly  des t roy  the tube, 

rate is low, however, then these processes  w i l l  be  b e n e f i c i a l  because they 

The spu t t e red  

I f  the sputtetj ing 

w i l l  clean o f f  the cathode su r face  and p r e f e r e n t i a l l y  absorb impur i t ies  i n  a 

rare gas glow tube, Many commercial glow tubes are ttpre-aged" by running them 

24 hours i n  the abnormal glow discharge region (F t o  G i n  Figure 2) a t  twice 

their r a t e d  normal glow cu r ren t  dens i ty  J, and then 24 hours a t  the r a t e d  

normal glow cur ren t  dens i ty ,  (10z14) W i t h  the cathodes and gases  cleaned up 

antalum, nickel, copper and silver, 
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111. EXPERIMENTAL PROCEDURE 

A schematic diagram of the experimental  

The apparatus  was  a l l  s tand  

tube voltmeter (VTVM) o r  a regular  Simpson Meter (VOM) whe 

impedance was  no t  required.  Current w a s  measured w i t h  an electrometer  

(range t o  lo-' A) .  The r e s i s t o r  R w a s  zero f o r  the ion iza t ion  chamber 

and propor t iona l  counter experiments, and w a s  ad jus t ab le  a t  non-zero values  

f o r  the glow tube work, 

used t o  provide a v a r i a b l e  emf E from 0 t o  5000 V, 

Both homemade and commercial power suppl ies  w e r e  

The  vacuum arrangement 

i n  Figure 5 is  the f i n a l  design used i n  the later s t a g e s  of our  work; the o i l  

d i f f u s i o n  pump and P h i l l i p s  gauge w e r e  no t  u t i l i z e d  i n  much of the earlier 

experimentation. A l l  vo l t age  measurements reported here are accura te  t o  

- + lo%, the cu r ren t  accuracy is - + 5%, and the p res su re  measurement accuracy 

i s  - + 0.1%. 

Several vacuum chambers of var ious designs were used i n  the course 

of t h k s  work. 

w e r e  made t o  vary the d i s t a n c e  between the p l a t e s  as w e l l  as t o  interchange 

p l a t e s  of d i f f e r e n t  cross-sect ional  area. Ci rcu lar  b ra s s  e lec t rodes  w e r e  

For the p a r a l l e l  p l a t e  e l ec t rode  configurat ions,  provis ions 

u t i l i z e d  f o r  the p a r a l l e l  p l a t e  geometry, 

t o  such an e l ec t rode  by sandwiching i t  between the f l a t  s i d e  of the p l a t e  

and a thin (- 1/16 in.) annular  b ra s s  p i ece  (cutout area 5 area of the f o i l ) ,  

A r ad ioac t ive  f o i l  w a s  fas tened 

ode w i t h  two s m a l l  f l a t h e a  

er cons is ted  of a copper w i r e  

electr of a b t the wire being supported 

each end of th  a tubular  in 
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conductor ( to  which the w i r e  w a s  soldered) ,  

and he ld  i n  p l ace  aga ins t  the i n s i d e  w a l l  of the ou te r  conductor by a small 

w i r e  sp r ing  c l i p .  

A r ad ioac t ive  f o i l  w a s  bent  

Two kinds of glow tube  e l ec t rodes  w e r e  u t i l i z e d ,  Commercial neon glow 

lamps w e r e  s t r ipped  down t o  their two p a r a l l e l  c y l i n d r i c a l  e l ec t rodes  

(barium-strontium su r faces ) ,  

t o  the propor t iona l  counter design (except without the rad ioac t ive  fo i l ; )  

w e r e  constructed,  

i n se r t ed  d i r e c t l y  across  the tube e l ec t rodes ,  

as shown i n  Figure 5, and the vo l t age  across  the tube was  computed by 

sub t r ac t ing  the p o t e n t i a l  drop across  the r e s i s t o r  R from the VTVM reading, 

The drop across  the ammeter is  neg l ig ib l e ,  of course. 

In  addi t ion ,  homemade coax ia l  devices  s i m i l a r  

M e  observed that even a VTVM: loaded the glow tubes when 

Hence the VTVM w a s  loca ted  

In a l l  our  experiments, the vacuum chamber w a s  f i r s t  pumped ou t  and 

f lushed several t imes,  and then w a s  f i l l e d  w i t h  gas  t o  the highest pressure  

t o  be t e s t e d ,  Lower pressures  w e r e  obtained by pumping on the system, 

the case of gas  mixtures ,  the main cons t i t uen t  was  used f o r  flushing. 

f lush ing ,  the impuri ty  gas  was  admitted t o  the chamber f i r s t  t o  a low pressure,  

and then the m a i n  cons t i t uen t  gas  w a s  admitted t o  a h igh  pressure,  the r a t i o  

of the two pressures  giving the relative percentages of the two gases ,  T h i s  

order  is  necessary t o  ob ta in  a r ap id  mixing of the twQ gases ,  

In 

Af ter  
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I V .  EXPERIMENTAT, RESULTS 

A. Ion iza t ion  Chambers 

Parallel p l a t e  i on iza t ion  chambers w e r e  t e s t ed  by varying the gas,  

gas dens i ty ,  vol tage,  rad ioac t ive  source a c t i v i t y ,  e l ec t rode  area, and 

d i s t ance  between t h e  e lec t rodes ,  Considerable d a t a  w i t h  c i r c u l a r  brass  

e lec t rodes  w e r e  taken a t  room temperature and w e  compress them here t o  g ive  

the  main r e s u l t s .  Four Americium-241 alpha f o i l  sources from Radiation 

Materials Corporation (124 Calvary S t r e e t ,  Waltham, Massachusetts) w e r e  

u t i l i z e d :  1Model  AF.2 (100 V C i  nominal a c t i v i t y ,  .8 i n ,  x .25 i n . ) ?  1Model  

AF.3 (250 p C i  nominal a c t i v i t y ,  .8 i n .  x ,5 i n , ) ,  and 2 custom f o i l s  (each 

1000 p c i  nominal a c t i v i t y ,  4.2 cm x 2,O cm). 

Figure 6 shows ion iza t ion  cur ren t  d a t a  taken f o r  a 90% argon - 10% helium 

mixture as a func t ion  of applied vol tage  V a t  three pressures ,  Note that the 

onset  of s a t u r a t i o n  occurs a t  higher  vol tages  as the pressure  goes up 

(see equation (8)). Current I as a func t ion  of gas  pressure  i s  shown i n  

Figure 7 f o r  t h e  A-He mixture at  175 V under otherwise i d e n t i c a l  conditions.  

The curve is l i n e a r  i n  the  middle and begins t o  bend over s l i g h t l y  a t  higher 

pressures  due t o  the  onset  of recombination. 

f o r  a i r  under i d e n t i c a l  conditions.  

Also p lo t t ed  i n  Figure 7 are d a t a  

This i l l u s t r a t e s  dramatical ly  t h a t  t h e  

dc operat ion of these chambers is  q u i t e  i n s e n s i t i v e  t o  t h e  gas used. Further 

evidence of this is  shown i n  Tables V and V I .  

t h e  constant  value of I f o r  s a t u r a t i o n  of t h e  ion iza t ion  chamber a t  a given 

pressure,  and the s a t u r a t i o n  vol tage  V 

which t h e  chamber is still  sa tu ra t ed  a t  a given pressure,  

Tables V and V I  i n d i c a t e s  that a l l  the gases  and gas mixtures have i d e n t i c a l  

The s a t u r a t i o n  cur ren t  ISAT is  

is defined as the lowest vo l tage  a t  SAT 

Examination of 
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Figure 7. I o n i z a t i o n  cur rent  I versus pressure P a t  175 V and room temperature 
f o r  90% argon - 10% helium and a i r .  
Figure 6 .  

Same conf igura t ion  as i n  
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Table V. Sa tura t ion  cu r ren t  ISAT and s a t u r a t i o n  vol tage  VSAT a t  three 
d i f f e r e n t  pressures  using t h e  same configurat ion as i n  Figure 6. 

G a s  
650 Torr 450 Torr 80 Torr 

'SAT 'SAT 'SAT 'SAT 'SAT 'SAT 
(10-9 A) (v) A) (V) (10-9 A) (VI 

Pure A 40.5 250 34 250 7 . 3  125 

90% A - 10% CH4 40 200 34 180 7.4 125 

90% A - 10% C02 40.5 250 34 150 7.5 80 

90% A - 10% He 39 250 31 150 6.5 12 5 

Pure H e  10.2 100 7.3 50 1.5 40 

Table V I .  Ion iza t ion  cur ren t  I a t  t w o  pressures  using the  same configurat ion 
as i n  Figure 6 a t  175 V. 

G a s  I (10-9 A) 
a t  700 Torr 

I (10-9 A) 
a t  1 Torr 

Pure A 41 0.22 

90% A - 10% CH4 40 - 0.1 

90% A - 10% C02 

90% A - 10% He 

40 

38.5 

0.28 

0.3 

Pure H e  10.8 0.15 

Air 28 0.15 

Pure N2 - 30 

- 10 

- 40 

Pure H2 

Pure CH4 
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characteristics within a f a c t o r  of 4 under otherwise i d e n t i c a l  conditions.  

Numerous v a r i a t i o n s  on the above condi t ions w e r e  made.. W e  measure 

the same cur ren t  with and without a guard r i n g  unde 

condi t ions,  and the re fo re  discarded this as an unn y f ea tu re ,  V 

of the diameter of the e l ec t rode  p l a t e s  and the i n t e r e l e c t r o d e  spacing d produced 

no dramatic r e s u l t s .  In  f a c t ,  i f  the electric f i e l d  (= V/d) is kept  constant ,  

the only e f f e c t  of changing the diameter and the spacing d should b e  t o  

change the t o t a l  number of i o n  p a i r s  n W e  expect I 

n and thus I, t o  be  approximately propor t iona l  t o  the volume of gas  between 

t h e  two e lec t rodes .  

produced by the rad ia t ion ,  

I’ 

Our measurements w e r e  i n  rough agreement w i t h  this 

predic t ion .  F ina l ly ,  the v a r i a t i o n  of cur ren t  w i t h  d i f f e r e n t  Am-241 source 

a c t i v i t i e s  was  s tudied.  Because of the nominal character af the r a t e d  ac t iv i t ies  

and the d i f f e r e n t  areas of the var ious f o i l s ,  i t  w a s  no t  convengent t o  g e t  

highly accura te  d a t a  on the a c t i v i t y  dependence of I. Crude in t e rpo la t ions  gave 

the  cur ren t  as roughly propor t iona l  t o  the a c t i v i t y ,  bu t  we claim no g r e a t  

accuracy f o r  this r e s u l t ,  

W e  made an attempt t o  see how l a r g e  a cur ren t  w e  could g e t  with two 

high a c t i v i t y  (1000 p C i  each) Am-241 f o i l s  and l a r g e  e l ec t rode  area Cone p l a t e  

had 217/8 in.  diameter,  the o ther ,  3 3/8 i n ,  diameter) ,  One f o i l  was  a t tached 

t o  each e lec t rode ,  w i t h  the two f o i l s  fac ing  each other ,  Although this 

geometry is  too l a r g e  f o r  convenient use  on a spacec ra f t ,  w e  made the test t o  

the maximum cur ren t  ob ta inable  under r e l a t i v e l y  optimum condi t ions % 

The r e s u l t s  f o r  pure argon are shown i n  Figure 8, A t  1 atmosphere pressure  

the maximum cur ren t  obtained was  2.8 x lom7 A a t  300 V w i t h  a 1 in,  spacing, 

This is  roughly a f a c t o r  of 2 lower than the cur ren t  given i n  equat ion (161, 

and s the p r a c t i c a l  upper l i m i t  f o r  this type of device with moderate source 
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s t r eng ths ,  

mu l t ip l i ca t ion  and w i l l  be  discussed i n  the next  s ec t ion ,  

The cur ren t  maxima f o r  low pressures  a t  30Q V are caused by 

B. Propor t iona l  Counters 

Measurements w e r e  made on a coax ia l  device  having a copper wire central 

e l ec t rode  (0.005 in,  diameter) supported a t  both  ends by glass-to-metal  seals 

i n  a 7/16 in. i .d .  b ra s s  tube of l eng th  2 in. T h e  100 pCi Am-241 f o i l  was  

curved and snug f i t  aga ins t  the i n s i d e  w a l l  of the b r a s s  tube w i t h  a s m a l l  

w i r e  spr ing  c l i p .  

w i t h  and without guard r i n g s  under otherwise i d e n t i c a l  condi t ions,  so we  

discontinued their use i n  later tests. 

In an e a r l y  experiment, the same cur ren t  was  measured b o t h  

Data of cu r ren t  versus  vol tage  f o r  pure  argon a t  four  pressures  are shown 

i n  Figure 9. 

chamber behavior. 

sharply,  a t t a i n i n g  m u l t i p l i c a t i o n s  of over lo4 a t  higher  voltages. ,  

at tempt w a s  made t o  determine the q u a n t i t a t i v e  dependence of I on V and P, 

An important po in t  is  the cross-over of the four  curves between 300 and 500 V, 

This i n d i c a t e s  that above 500 V the cur ren t  I increases as P decreases  from 

657 Torr t o  20 Torr; at  still lower pressures  the cu r ren t  w i l l  decrease,  

the v a r i a t i o n  of I w i t h  gas  dens i ty  a t  h igh  vol tages  is  - no t  monotonic, 

of such a device  as a gas dens i ty  d e t e c t o r  could lead  t o  ambiguity unless  the 

device w e r e  w e l l  c a l ib ra t ed ,  

A t  vo l tages  below 100-200 V w e  see the now fami l i a r  i on iza t ion  

Above 200 V mul t ip l i ca t ion  sets i n  and the cur ren t  rises 

No 

Hence 

U s e  

Figure 1Q and 11 show d a t a  on pure argon and on a 9Q% argon 5 10% carbon 

dioxide mixture,  a t  lower vol tages ,  

P 7 700 Torr a t  these vol tages ,  

There is no apparent mul t2pl ica t ion  f o r  

W e  no te  the cur ren t  maximum i n  pure argon 

near 4 Torr a t  400 V, caused by m u l t i p l i c a t i o n  a t  lower gas d e n s i t i e s  where 
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Figure 10. Current I versus pressure P f o r  pure argon a t  room temperature. 
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the e l e c t r o n  mean f r e e  pa th  becomes l a rge ,  The add i t ion  of 10% C02 t o  argon 

lowers the e l e c t r o n  a g i t a t i o n  energy and decreases  the mul t ip l i ca t ion ,  as w e  

see i n  Figure  11, In  both  cases, however, there is  some mul t ip l i ca t ion  a t  

lower pressures  f o r  vo l tages  above 300 V, which is the same e f f e c t  seen i n  

Figure 8 f o r  pure argon i n  the p a r a l l e l  p l a t e  geometry., W e  d id  not  i n v e s t i g a t e  

t h e  e f f e c t  on I of v a r i a t i o n s  i n  the tube geometry and the f o i l  a c t i v i t y .  

C. Glow Tubes 

W e  have made ex tens ive  tests t o  determine the optimum design f o r  a glow 

tube gas  de t ec to r .  

c a l i b r a t i o n  d a t a  f o r  our  f i n a l  design f o r  a prototype gas  detector.. 

p r inc ip l e ,  one should use c a r e f u l  cleaning and outgassing techniques,  bu t  

time l i m i t a t i o n s  forced us t o  compromise on some of these precaut ions,  W e  

found that molybdenum d id  not  so lde r  with t i n ,  lead o r  silver so lde r s  using 

var ious  ac id  f luxes ,  Therefore n i cke l  w i r e  has been used i n  a l l  our 

designs (with one exception) since it  is r e a d i l y  a v a i l a b l e  and so lde r s  e a s i l y ,  

Reported i n  this s e c t i o n  are our prel iminary tests and 

I n  

Preliminary d a t a  on some prototype de tec to r s  are shown i n  Figure 12  and 

Table V I I .  

bu t  no hea t ing  o r  outgassing a t  h igh  vacuum w a s  attempted, 

c y l i n d r i c a l  e l ec t rodes  (each - 1/32 in ,  d i m .  and 5/16 in. i n  length,  spaced 

- 1/16 in .  apa r t )  with a barium-strontium su r face  from a stripped-down 

commercial glow lamp w e r e  i n s e r t e d  i n  our vacuum chamber w i t h  99% He - 1% A 

and t e s t e d  f o r  breakdown a t  var ious pressures ,  

curve 1 i n  Figure 12,  where one observes 

similar curve (not shown) f o r  pure  argon gas  gave pin as 160 V a t  20 Torr,  

The o the r  tests w e r e  performed w i t h  coaxia l  devices u t i l i z i n g  a b ras s  tube 

The  vacuum chamber w a s  f lushed before  each set of d a t a  was  taken, 

Two p a r a l l e l ,  

The  r e s u l t s  are shown i n  

t o  b e  165 V a t  20 Torr. A p i n  
S 

S 
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(118 i n ,  0.d. and 3 /32  i n .  i .d . )  and a n i c k e l  w i r e  c e n t r a l  e l ec t rode  along 

t h e  ax i s  of the tube. The wire w a s  l ed  out  of the brass  tube e i t h e r  through 

a g lass - toaze ta l  seal (in the case of .020 i n .  n i cke l  wire) o r  through a 

p l a s t i c  i n s u l a t o r  ( in  the case of .033 in, and .040 in. diam, n i cke l  w i r e s ) ,  

The length  of t h e  b ra s s  tube and coaxia l  w i r e  were the same. Curves 2 and 3 

i n  Figure 1 2  show da ta  f o r  a device 1 in .  i n  length  with ,020 i n ,  diam, n i cke l  

w i r e  i n  pure helium gas. The  central w i r e  e lec t rode  is negat ive i n  curve 2 

\ %  

Table V I I .  Minimum s t r i k i n g  vol tage  e versus pressure  P'  for '  severa;' . * 
coaxia l  devices using pure helium gas.  Configuration d e t a i l s  
are given i n  the text. 

Pin (v) P (Torr) Length Cent ra l  Wire Central  Wire 
(in.) d i m .  ( in , )  Po la r i ty  S 

150 

190 

180 

190 

170 

180 

150 

190 

50 

40-60 

30-40 

50 

30-80 

50-80 

40-60 

50-120 

.020 

.020 

020 

.020 

.033 

.033 

.040 

,040 

and p o s i t i v e  i n  curve 3. An i n t e r e s t i n g  poin t  is t h a t  curve 3 crosses  curve 2 

a t  roughly 185 Torr.  

a t  pressures  above 185 Torr i nd ica t e  t h e  predominance of photoelectron 

The lower V values  f o r  t h e  p o s i t i v e  c e n t r a l  e lec t rode  
S 

production over e l ec t ron  production by p o s i t i v e  ion  bombardment of t h e  cathode, 

and might be of use a t  h igh  de tec to r  f i l l i n g  pressures ,  The minimum s t r i k i n g  
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vol tage  pin f o r  these two and several o the r  s imi l a r  coaxia l  configurat ions 

with pure helium gas  are shown i n  Table V I I ,  The d a t a  are roughly t h e  same 

f o r  d i f f e r e n t  w i r e  diameters,  a r e s u l t  i n  agreement w i t h  theory. 

is lower when t h e  c e n t r a l  w i r e  e l ec t rode  is negat ive.  W e  no te  that 5" is 

roughly the same (though higher  than t h e  values  reported i n  the  l i t e r a t u r e  

f o r  t h e  barium-strontium, commercial, c y l i n d r i c a l  e l ec t rodes  and f o r  our coaxial  

nickel-brass devices ,  a f a c t  probably explained by su r face  contamination of 

t he  e lec t rodes .  

coaxial  device w i t h  99% He - 1% A used ins tead  of pure helium, probably 

S 

(10) p i n  
S 

(10)) 

Other d a t a  showed l i t t l e  d i f f e rence  i n  pin f o r  a given 
S 

due t o  gas  contamination. 

a glow tube, cur ren ts  from 0.5 t o  3.5 mA have been obtained, t h e  tube vol tage  

V 

region (E t o  F i n  Figure 2) .  

By varying t h e  ex te rna l  r e s i s t ance  i n  series w i t h  

remaining constant  wi th in  lo%,  as expected i n  the  normal glow discharge r 

An alternative coaxia l  geometry similar t o  that shown i n  Figure 1 3  w a s  

designed. 

tube,  w i t h  a b ra s s  plug soldered i n t o  one end of the tube, while the w i r e  

comes out  the o ther  end through a glass- to-metal  seal, 

e l iminates  one glass-to-metal seal and provides a convenient p lace  on which 

t o  so lder  a rad ioac t ive  foil source,  

evacuation and f i l l i n g .  

diam. n i c k e l  wire i n  pure helium gas a t  100 Torr pressure  and room temperature 

are given i n  Table V I I I ,  

The c e n t r a l  w i r e  e l ec t rode  is  s h o r t e r  than its coaxial  b ra s s  

The b ras s  plug 

A gas feed tube on the s i d e  allows 

Data f o r  several of these devices w i t h  a .025 in .  

N o  coBalt-60 f o i l s  w e r e  used i n  these devices,  

and b ras s  plugs w e r e  omitted on two of t h e  de tec tors ,  The  two main items of 

interest i n  this d a t a  are the lower values  of Vs f o r  the 3/32 in .  i ,d ,  b rass  

tubes,  and the higher  values  f o r  the tubes w i t h  nickel w i r e  c e n t r a l  

e lec t rodes  only 1 / 4  i n .  long, These d a t a  suggested our f i n a l  design (see 
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Figure 1 3 )  of a 3 / 3 2  i n .  i .d. b r a s s  tube w i t h  a centna l  e l ec t rode  1 / 2  i n ,  

i n  length.  

Our f i n a l  design f o r  a prototype gas  de t ec to r  is shown i n  Figure 1 3 .  

The E l e c t r i c a l  Indus t r i e s  (691 Cent ra l  Avenue, Murray H i l l ,  New Jersey)  Type 

4AS-40T-SX, compression-type, glass-to-metal  seal used there has a tubular  

c e n t r a l  conductor through which t h e  .025 in .  diameter n i c k e l  w i r e  passes and t o  

which it  is soldered. The cobal t  f o i l s  w e r e  too l a r g e  t o  f i t  i n  t he  3 / 3 2  i n .  

i . d .  b ra s s  tube, so a 118 i n ,  i , d .  b rass  sleeve w a s  used i n  combination w i t h  

t he  b ra s s  plug t o  hold the f o i l  in .  The s l eeve  is only a characteristic of 

our prototype model and is  not  a necessary fea ture ,  A l l  j o i n t s  w e r e  soldered 

with pure t i n  so lder .  After  construct ion each u n i t  was  cleaned off ca re fu l ly  

and then washed (both i n s i d e  and outs ide)  successively w i t h  d i l u t e  n i t r i c  

ac id ,  d i s t i l l e d  water and acetone. 

Table V I I I .  S t r ik ing  vol tage  Vs f o r  several coaxia l  devices  w i t h  pure ' 

helium a t  100 Torr pressure  and room temperature. 

Nickel Wire Brass Tube Brass Tube Central  Electrode Brass 
Vc (V) Length ( in . )  Length (in.)  i .d .  ( in.)  P o l a r i t y  Plug 

240 1 1 118 118 - Y e s  

240 1 1 11% 118 + Y e s  

- Y e s  

+ Y e s  

210 112 314 3 / 3 2  + No 

5 1  



Ten cobalt-59 f o i l s ,  each 7. 1/8 in. square by ,005 in. thick and weighing 

6 mg, w e r e  i r r a d i a t e d  with thermal neutrons i n  the VPI r eac to r  i n  order  t o  

activate cobalt-60, 

a f t e r  i r r a d i a t i o n .  Cobalt-60 has a h a l f - l i f e  T 

b e t a  p a r t i c l e  (314 keV maximum k i n e t i c  energy) and two gamma rays  (1,173 MeV 

and 1.332 MeV). 

The f o i l s  had measured activit ies between 0,32 and 0,37 V C i  

of 5.3 years ,  emi t t ing  a 
1 / 2  

Af te r  a f o i l  w a s  i n s t a l l e d  in a d e t e c t o r  as in Figure 13, 

the measured r a d i a t i o n  ou t s ide  the de tec to r  w a s  3 t o  4 millirem/hr (a typ ica l  

luminiscent w r i s t  watch g ives  out  1 t o  2 mi l l i rem/hr ) ,  

f o i l s  of this low a c t i v i t y  (< 1 WCi) do not  r equ i r e  an AEC l i c e n s e  and up t o  

ten of them can be  sent through the m a i l  t o  an unlicensed par ty ,  

i n  the interests of s a f e t y ,  reasonable precaut ions should b e  used i n  

handling these de tec to r s .  

C o b a l t 4 0  unsealed 

However, 

Ca l ib ra t ion  d a t a  f o r  u n i t s  constructed i n  our f i n a l  design (Figure 13) 

are given i n  Tables IX and X and i n  Figure 14,  

#2 and #3. 

vacuum system o r ,  when using a temperature ba th ,  soldered onto a tube 

connected t o  the vacuum system, 

high vacuum p r i o r  t o  t e s t i n g .  

(Table X) that there w a s  no g r e a t  v a r i a t i o n  between 0' and 100' C ,  

the s t r i k i n g  vol tage  Vs d id  rise by 50 t o  100 V a t  l i q u i d  a i r  temperatures 

(- 195' C) compared t o  room temperature, 

temperature f o r  the three u n i t s  g ives  an idea  of the v a r i a t i o n  i n  

characteristics from u n i t  t o  un i t .  

Figure 1 4  is un l ike  previous measurements in  that it  is  n o t  f l a t  and the 

vol tage  v a r i a t i o n s  exceed lo%, 

I f  the appl ied  vol tage  w a s  kept  constant  and the helium gas  pressure  was  

slowly lowered (at f ixed  temperature),  the cur ren t  remained constant  within 

T h e  u n i t s  are designated f l ,  

The  da t a  were taken w i t h  the devices  either i n s i d e  a b e l l  jar 

These u n i t s  w e r e  no t  heated o r  outgassed a t  

The measurements of Vs and I f o r  u n i t  #2 show 

However, 

Comparison of the da ta  at  room 

The voltage-current c h a r a c t e r i s t i c  i n  

W e  have no explanat ion f o r  these r e s u l t s ,  
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200 300 2.4 270 2.1 250 1.8 

175 2 80 2.0 260 1.7 2 30 1.4 

150 270 1.6 250 1.6 210 1.1 

125 2 30 1.0 290 1.0 - - 
100 200 0.52 200 0.80 200 1.0 

75 2 10 0.60 190 0.40 17 0 0.60 

50 180 0.28 180 0.54 180 0.80 

25 230 0.60 18 0 0.24 - - 

Table X. S t r ik ing  vol tage  Vs, cur ren t  I and pressure  P f o r  u n i t  112 wi th  
pure helium at  four  temperatures. The central w i r e  e l ec t rode  had 
negat ive  pola2fty.  A 46 kilohm r e s i s t o r  w a s  i n  series wi th  t h e  tube. 

200 270 1.2 270 2.0 260 1.6 340 1.8 

175 240 1.0 260 1.8 2 30 1.1 300 0.90 

150 235 0.90 250 1.5 210 0.80 310 1.2 

100 210 0.50 220 0.80 19 0 0.45 300 0.90 

50 250 0.60 210 0.60 210 0.50 280 0.70 
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a f a c t o r  of 2 o r  3 from 200 Torr t o  20 Torr,  and then dropped f a i r l y  r ap id ly  

t o  an extremely low va lue  a t  about 15  Torr ,  

Unit  #l w a s  i n s t a l l e d  i n  a c a l i b r a t e d  v i b r a t o r  in  the VPI  Engineering 

Mechanics Department, and subjec ted  t o  o s c i l l a t o r y  v ib ra t ions  with the 

following m a x h u m  acce le ra t ions  : 3g (18 Hz) 34g (500 Hz) 14g (1000 Hz) 

lg(10,OOO Hz) and lg(20,OOO Hz) , where g is  the acce le ra t ion  due t o  g rav i ty ,  

Vibrat ion a t  each frequency l a s t e d  f i v e  minutes. 

a f t e r  the v i b r a t i o n  treatment w e r e  e s s e n t i a l l y  the same as those before ,  

thereby showing that the u n i t  can withstand these v ib ra t ions ,  

Values of Vs and I measured 

Our d a t a  on the e f f e c t  of the c o b a l t 4 0  f o i l  source  show some 

incons is tenc ies ,  bu t  the t rend  is c l e a r ,  

l i k e  u n i t  f l  except  without the CO-60 f o i l  i n  i t ,  

e l ec t rode  negat ive ,  Vs w a s  50 t o  100 V h igher  than i n  u n i t  fl a t  helium 

pressures  between 25 and 100 Torr a t  room temperature, bu t  was  the same a t  

150 Torr.  

ro se  i f  the u n i t  w a s  l e f t  i n  the b e l l  jar  a t  a given gas  pressure.  

w a s  - 40 V i n  4 hours and - 100 V i n  10 hours f o r  one u n i t  without a C0-60 

f o i l .  

40 V i n  10 hours. 

One device was  constructed exac t ly  

W i t h  the central 

Another e f f e c t  w e  have observed is that the s t r i k i n g  vol tage  

T h e  rise 

Another i d e n t i c a l  uni t  w i t h  a CO-60 f o i l  i n  i t  showed a rise of only 

Unit 113 was  t e s t e d  w i t h  our l imi t ed  supply of pure  neon gas ,  and gave 

similar characteristics t o  the helium; Vs =as 190-200 V f o r  neon pressures  

between 25 and 100 Torr a t  room temperature, 

the same characteristics f o r  pure helium, pure  neon, and f o r  99% He - 1% A, 

i n  disagreement with theory,  

the w a l l s  of our  vacuum system, 

Hence our devices  have roughly 

This may have been caused by outgassing from 

Attempts w e r e  made t o  cons t ruc t  a sea l ed  de tec to r ,  Le,, t o  seal o f f  
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the gas feed tube w i t h ,  say,  helium gas  a t  100 Torr in the de tec tor ,  Due 

t o  time l i m i t a t i o n s  w e  w e r e  no t  a b l e  t o  p e r f e c t  our technique f o r  s ea l ing  

off the feed tube. 

none worked. 

f o r  two hours i n  the middle of a f i f t e e n  hour stretch during w h i c h  they w e r e  

outgassed i n  a h igh  vacuum system, 

A series of f i v e  sea led  d e t e c t o r s  were constructed,  bu t  

P r i o r  t o  f i l l i n g  and sealing, we  baked the devices at  175' F 
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V. CONCLUSIONS AND RECOMMENDATIONS 

Our t h e o r e t i c a l  arguments and experimental  r e s u l t s  f o r  i o n i z a t i o n  

-7 chambers are i n  agreement i n  g iv ing  maximum s a t u r a t i o n  cu r ren t s  - 10 - 
A f o r  reasonable  r ad ioac t ive  source activities (- 1 m C i  a lpha source) 

a t  several hundred v o l t s ,  Since such low cu r ren t s  are d i f f i c u l t  t o  d e t e c t  

under f l i g h t  condi t ions i n  space, we cannot recommend ion iza t ion  chambers 

f o r  gas dens i ty  de t ec t ion ,  However, w e  draw attention t o  the approximate 

linear dependence of the cur ren t  on gas dens i ty  a t  intermediate  d e n s i t i e s ,  

a f a c t  which could be of use  i n  a hole  s i z e  de t ec to r  i f  s m a l l  cu r r en t s  

w e r e  e a s i l y  measurable i n  space. 

Propor t iona l  counters provide cu r ren t s  up t o  lQT5 - lo4 A a t  

vol tages  - 1000 V, both  o f  which compare unfavorably with t y p i c a l  glow 

tube characteristics. I n  addi t ion ,  the propor t iona l  counter cur ren t  i s  a 

non-monotonic func t ion  of the gas dens i ty  a t  the h igh  va l t ages  requi red  f a r  

s i g n i f i c a n t  mu l t ip l i ca t ion ,  so that ana lys i s  of the counter output beaomes 

d i f f i c u l t .  The  propor t iona l  counter is the least a t t r a c t i v e  candidate  

f o r  gas  dens i ty  de t ec t ion  in  space. 

The most promising de tec to r  is one based on the glow tube, Currents 

- 1 mA a t  vol tages  - 200 V are a t t a i n a b l e  using helium o r  neon w i t h  f i l l i n g  

pressures  of 50 t o  100 Torr at  room temperature. These devices  work i n  the 

temperature range -195' C t o  100' C, b u t  their s t r i k i n g  vo l t age  i s  50% l a r g e r  

a t  -195' C than a t  room temperature. 

v ibra t ions .  

b u t  may be  d i f f i c u l t  t o  use f o r  h o l e  s i z e  de tec t ion .  '26) 

device used f o r  the latter app l i ca t ion  would be  complicated unless  one could 

eliminate the change of the glow tube characteristics in time w h i c h  we  observed, 

They can withstand strains from 

This device appears t o  b e  most u s e f u l  as an cFon-off" type gauge, 

Ca l ib ra t ion  of a 
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Our s t r i k i n g  vol tages  increased 2Q% t o  50% i f  the device sat  i n  a b e l l  jar 

chamber f o r  10 hours. 

system w a l l s .  

this problem. 

e f f e c t  i n  our work. 

This may have been due t o  outgassing from the vacuum 

Careful  cleaning and outgassing of these devices  should he lp  

The cobalt-60 f o i l  sources (0 .34  WCi a c t i v i t y )  reduced the 

F ina l ly ,  we  i n d i c a t e  some modif icat ions that might be  worth studying 

i n  f u r t h e r  work. 

c h a r a c t e r i s t i c s  than glass-to-metal  seals and may be b e t t e r  f o r  use  i n  space, 

If a s u i t a b l e  means of welding o r  so lder ing  molybdenum can be found, this 

may be a super ior  c e n t r a l  e l ec t rode  material. A .006 or  .008 i n ,  thick 

n i c k e l  o r  molybdenum tube would probably be  b e t t e r  f o r  the outer  e l ec t rode  

than t h e  th i cke r  b ra s s  tube used i n  our prototype glow tube device, 

Ceramic seals have b e t t e r  v ib ra t ion  and temperature 

5% 
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